Popis: |
We propose the use of radical-mediated thiol-yne step-growth photopolymerizations for volume holographic recording in NPC films to overcome the drawback of low crosslinking densities but retain the advantage of low shrinkage in the thiol-ene photopolymerizations. The thiol-yne photopolymerization mechanism is different from the thiol-ene photopolymeriztions in the sense that each alkyne functional group can react consecutively with two thiol functional groups. We show that thiol-yne based NPC films dispersed with silica nanoparticles give the saturated refractive index change as large as 0.008 and the material recording sensitivity as high as 2005 cm/J at a wavelength of 532 nm, larger than the minimum acceptable values of 0.005 and 500 cm/J, respectively, for holographic data storage. We also show that the shrinkage of a recorded hologram can be as low as that of thiol-ene based NPC films and that the thermal stability is improved better. In addition, we demonstrate digital data page recording in thiol-yne based NPC films, showing a low symbol error rate and a high signal-to-noise ratio to be 2.8×10 −4 and 8, respectively. |