Unravelling the Development of Non-Covalent Organocatalysis in India

Autor: Gokarneswar Sahoo, Jeetendra Panda, Jigyansa Sahoo
Rok vydání: 2022
Předmět:
Zdroj: Synlett. 34:729-758
ISSN: 1437-2096
0936-5214
Popis: This review is devoted to underpinning the contributions of Indian researchers towards asymmetric organocatalysis. More specifically, a comprehensive compilation of reactions mediated by a wide range of non-covalent catalysis is illustrated. A detailed overview of vividly catalogued asymmetric organic transformations promoted by hydrogen bonding and Brønsted acid catalysis, alongside an assortment of catalysts is provided. Although asymmetric organocatalysis has etched itself in history, we aim to showcase the scientific metamorphosis of Indian research from baby steps to large strides within this field. 1 Introduction2 Non-Covalent Catalysis and Its Various Activation Modes3 Hydrogen-Bonding Catalysis3.1 Urea- and Thiourea-Derived Organocatalysts3.1.1 Thiourea-Derived Organocatalysts3.1.2 Urea-Derived Organocatalysts3.2 Squaramide-Derived Organocatalysts3.2.1 Michael Reactions3.2.2 C-Alkylation Reactions3.2.3 Mannich Reactions3.2.4 [3+2] Cycloaddition Reactions3.3 Cinchona-Alkaloid-Derived Organocatalysts3.3.1 Michael Reactions3.3.2 Aldol Reactions3.3.3 Friedel–Crafts Reactions3.3.4 Vinylogous Alkylation of 4-Methylcoumarins3.3.5 C-Sulfenylation Reactions3.3.6 Peroxyhemiacetalisation of Isochromans3.3.7 Diels–Alder Reactions3.3.8 Cycloaddition Reactions3.3.9 Morita–Baylis–Hilman Reactions4 Brønsted Acid Derived Organocatalysts4.1 Chiral Phosphoric Acid Catalysis4.1.1 Diels–Alder Reactions4.1.2 Addition of Ketimines4.1.3 Annulation of Acyclic Enecarbamates5 Conclusion
Databáze: OpenAIRE