Dynamical simplices and minimal homeomorphisms
Autor: | Tomás Ibarlucía, Julien Melleray |
---|---|
Rok vydání: | 2017 |
Předmět: |
Property (philosophy)
Singleton Applied Mathematics General Mathematics Existential quantification 010102 general mathematics Cantor space Characterization (mathematics) 16. Peace & justice 01 natural sciences Homeomorphism Set (abstract data type) Combinatorics 0103 physical sciences Computer Science::Programming Languages 010307 mathematical physics 0101 mathematics Mathematics Probability measure |
Zdroj: | Proceedings of the American Mathematical Society. 145:4981-4994 |
ISSN: | 1088-6826 0002-9939 |
DOI: | 10.1090/proc/13578 |
Popis: | We give a characterization of sets K K of probability measures on a Cantor space X X with the property that there exists a minimal homeomorphism g g of X X such that the set of g g -invariant probability measures on X X coincides with K K . This extends theorems of Akin (corresponding to the case when K K is a singleton) and Dahl (when K K is finite-dimensional). Our argument is elementary and different from both Akin’s and Dahl’s. |
Databáze: | OpenAIRE |
Externí odkaz: |