Enumeration of K-Trees and Applications
Autor: | Mahendra Jani, Robert G. Rieper, Melkamu Zeleke |
---|---|
Rok vydání: | 2002 |
Předmět: | |
Zdroj: | Annals of Combinatorics. 6:375-382 |
ISSN: | 0219-3094 0218-0006 |
DOI: | 10.1007/s000260200010 |
Popis: | A k-tree is constructed from a single distinguished k-cycle by repeatedly gluing other k-cycles to existing ones along an edge. If K is any nonempty subset of {2, 3, 4, . . .}, then a K-tree is obtained as above using k-cycles with $ k \in K $ . In this paper, we enumerate ordered K-trees, show that the ratio of terminal edges to total number of edges in K-trees is $ \frac{k-1}{k} $ , and use the K-trees as models to enumerate planted plane cacti. |
Databáze: | OpenAIRE |
Externí odkaz: |