Design methodology of a parabolic trough collector field for maximum annual energy yield
Autor: | Manmeet Singh, Jishnu Bhattacharya, Manish Sharma |
---|---|
Rok vydání: | 2021 |
Předmět: |
060102 archaeology
Renewable Energy Sustainability and the Environment Aperture 020209 energy 06 humanities and the arts 02 engineering and technology Mechanics Noon Trough (economics) Latitude Volumetric flow rate 0202 electrical engineering electronic engineering information engineering Mass flow rate Parabolic trough Environmental science Working fluid 0601 history and archaeology |
Zdroj: | Renewable Energy. 177:229-241 |
ISSN: | 0960-1481 |
Popis: | Improving efficiency and yield of a parabolic trough collector (PTC) field is of paramount technological importance. Here, an attempt toward this goal is made through combined optical and thermal simulation. Two major factors that affect the performance of an individual trough are mass flow rate and aperture width, which scales with rim angle. Performance of PTC-field is observed to have a non-linear scale-up rule as opposed to the same for an individual trough. Wider aperture leads to higher heat collection for individual trough; however, the same results in higher inter-trough shading limiting the number of troughs in a field and the effective unshaded hours. It also depends on insolation and latitude. Therefore, there lies a possibility of trade-off where flow rate, rim angle and design hours of operation require careful tuning to maximize annual energy yield. Here, a step by step procedure is demonstrated for Kanpur, India where optimal values of flow rate, rim angle and hours of operation are obtained to be 1.1 kg/s (for Syltherm 800 as the heat transfer fluid), 70° and 4 h around solar noon on winter solstice day, respectively. The methodology is illustrated to be generally applicable to any location or working fluid. |
Databáze: | OpenAIRE |
Externí odkaz: |