The Coda Calibration and Processing Tool: Java-Based Freeware for the Geophysical Community

Autor: Justin Barno, Rengin Gök, William R. Walter, Kevin Mayeda, Jorge Roman-Nieves
Rok vydání: 2020
Předmět:
DOI: 10.5194/egusphere-egu2020-5874
Popis: The coda magnitude method of Mayeda and Walter (1996) provides stable source spectra and moment magnitudes (Mw) for local to regional events from as few as one station that are virtually insensitive to source and path heterogeneity. The method allows for a consistent measure of Mw over a broad range of event sizes rather than relying on empirical magnitude relationships that attempt to tie various narrowband relative magnitudes (e.g., ML, MD, mb, etc.) to absolute Mw derived from long-period waveform modeling. The use of S-coda and P-coda envelopes has been well documented over the past several decades for stable source spectra, apparent stress scaling, and hazard studies. However, up until recently, the method requires extensive calibration effort and routine operational use was limited only to proprietary US NDC software. The Coda Calibration Tool (CCT) stems from a multi-year collaboration between the US NDC and LLNL scientists with the goal of developing a fast and easy Java-based, platform independent coda envelope calibration and processing tool. We present an overview of the tool and advantages of the method along with several calibration examples, all of which are freely available to the public via GitHub (https://github.com/LLNL/coda-calibration-tool). Once a region is calibrated, the tool can then be used in routine processing to obtain stable source spectra and associated source information (e.g., Mw, radiated seismic energy, apparent stress, corner frequency, source discrimination on event type and/or depth). As more events are recorded or new stations added, simple updates to the calibration can be performed. All calibration and measurement information (e.g., site and path correction terms, raw & measured amplitudes, errors, etc.) is stored within an internal database that can be queried for future use. We welcome future collaboration, testing and suggestions by the geophysical community.
Databáze: OpenAIRE