Extensions of Hartfiel's inequality to multiple matrices
Autor: | Yanling Mao |
---|---|
Rok vydání: | 2020 |
Předmět: |
Numerical Analysis
Class (set theory) Algebra and Number Theory Inequality media_common.quotation_subject 010102 general mathematics 010103 numerical & computational mathematics Positive-definite matrix 01 natural sciences Combinatorics Discrete Mathematics and Combinatorics Geometry and Topology 0101 mathematics Mathematics media_common |
Zdroj: | Linear Algebra and its Applications. 589:96-102 |
ISSN: | 0024-3795 |
DOI: | 10.1016/j.laa.2019.12.019 |
Popis: | Hartfiel's determinant inequality, which refines Haynsworth's determinant inequality, is a remarkable refinement of the fundamental determinant inequality det ( A + B ) ≥ det A + det B , where A , B are positive definite matrices. In this paper, we first extend Hartfiel's determinant inequality to multiple positive definite matrices, and then we further extend the result to a larger class of matrices, namely, matrices whose numerical ranges are contained in a sector. |
Databáze: | OpenAIRE |
Externí odkaz: |