Missing value imputation using decision trees and decision forests by splitting and merging records: Two novel techniques

Autor: Zahidul Islam, Md. Geaur Rahman
Rok vydání: 2013
Předmět:
Zdroj: Knowledge-Based Systems. 53:51-65
ISSN: 0950-7051
Popis: We present two novel techniques for the imputation of both categorical and numerical missing values. The techniques use decision trees and forests to identify horizontal segments of a data set where the records belonging to a segment have higher similarity and attribute correlations. Using the similarity and correlations, missing values are then imputed. To achieve a higher quality of imputation some segments are merged together using a novel approach. We use nine publicly available data sets to experimentally compare our techniques with a few existing ones in terms of four commonly used evaluation criteria. The experimental results indicate a clear superiority of our techniques based on statistical analyses such as confidence interval.
Databáze: OpenAIRE