Sequential intrinsic and extrinsic geometry calibration in fluoro CT imaging with a mobile C-arm

Autor: Wayne Christensen, Arvi Cheryauka, Sebastien Breham
Rok vydání: 2006
Předmět:
Zdroj: Medical Imaging: Image-Guided Procedures
ISSN: 0277-786X
Popis: Design of C-arm equipment with 3D imaging capabilitys involves retrieval of repeatable gantry positioning information along the acquisition trajectory. Inaccurate retrieval or improper use of positioning information may cause degradation of the reconstruction results, appearance of image artifacts, or indicate false structures. The geometry misrepresentation can also lead to the errors in relative pose assessment of anatomy-of-interest and interventional tools. Comprehensive C gantry calibration with an extended set of misalignment and motion parameters suffers from ambiguity caused by parameter cross-correlation and significant computational complexity. We deploy the concept of a waterfall calibration that comprises sequential intrinsic and extrinsic geometry calibration delineation steps. Following the image-based framework, the first step in our method is intrinsic calibration that deals with delineation of geometry of the X-ray tube-Detector assembly. Extrinsic parameters define motion of the C-arm assembly in 3D space and relate the Camera and World coordinate systems. We formulate both intrinsic and extrinsic calibration problems in vectorized form with total variation constraints. The proposed method has been verified by numerical design and validated by experimental studies. Sequential delineation of intrinsic and extrinsic geometries has demonstrated very efficient performance. The method eliminates the cross-correlation between cone-beam projection parameters, provides significantly better accuracy and computational speed, simplifies the structures of calibration targets used, and avoids the unnecessary workflow and image processing steps. It appears to be adequate for quality and cost derivations in an interventional surgery settings using a mobile C-arm.
Databáze: OpenAIRE