Varieties of Elementary Subalgebras of Maximal Dimension for Modular Lie Algebras
Autor: | Jim Stark, Julia Pevtsova |
---|---|
Rok vydání: | 2018 |
Předmět: |
Modular representation theory
Pure mathematics business.industry 010102 general mathematics Dimension (graph theory) Subalgebra Modular design 01 natural sciences Restricted Lie algebra 0103 physical sciences Lie algebra 010307 mathematical physics 0101 mathematics Abelian group Mathematics::Representation Theory business Mathematics |
Zdroj: | Springer Proceedings in Mathematics & Statistics ISBN: 9783319940328 |
DOI: | 10.1007/978-3-319-94033-5_14 |
Popis: | Motivated by questions in modular representation theory, Carlson, Friedlander, and the first author introduced the varieties \(\mathbb E(r, \mathfrak g)\) of r-dimensional abelian p-nilpotent subalgebras of a p-restricted Lie algebra \(\mathfrak g\) in [8]. In this paper, we identify the varieties \(\mathbb E(r, \mathfrak g)\) for a reductive restricted Lie algebra \(\mathfrak g\) and r the maximal dimension of an abelian p-nilpotent subalgebra of \(\mathfrak g\). |
Databáze: | OpenAIRE |
Externí odkaz: |