On a Characterisation of Inner Product Spaces
Autor: | G. Z. Chelidze |
---|---|
Rok vydání: | 2001 |
Předmět: | |
Zdroj: | gmj. 8:231-236 |
ISSN: | 1572-9176 1072-947X |
DOI: | 10.1515/gmj.2001.231 |
Popis: | It is well known that for the Hilbert space H the minimum value of the functional F μ (f) = ∫ H ‖f – g‖2 dμ(g), f ∈ H, is achived at the mean of μ for any probability measure μ with strong second moment on H. We show that the validity of this property for measures on a normed space having support at three points with norm 1 and arbitrarily fixed positive weights implies the existence of an inner product that generates the norm. |
Databáze: | OpenAIRE |
Externí odkaz: |