Genetic Algorithm and Fuzzy C-Means Based Multi-Voting Classification Scheme in Data Mining
Autor: | Yubao Chen, Elsayed A. Orady, Mingwen Ou |
---|---|
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society. |
DOI: | 10.1109/nafips.2005.1548537 |
Popis: | This paper presents a practical scheme used in data mining for classifications based on fuzzy logic and multivoting decision algorithms. It combines the information gain heuristic and genetic algorithm (GA) to minimize the uncertainty level when estimating the weighting functions used in the multiple voting decision scheme. A preliminary test of this scheme using a well-know data set demonstrated its competency and performance improvement for classifications. |
Databáze: | OpenAIRE |
Externí odkaz: |