Light Trapping in Hydrogenated Amorphous and Nanocrystalline Silicon Based Thin-Film Solar Cells With Ag/ZnO Back Reflectors

Autor: Guozhen Yue, Baojie Yan, Jeffrey Yang, Jessica Owens-Mawson, Laura Sivec, Subhendu Guha
Rok vydání: 2012
Předmět:
Zdroj: MRS Proceedings. 1391
ISSN: 1946-4274
0272-9172
DOI: 10.1557/opl.2012.528
Popis: We report on our systematic study of light trapping effects using Ag/ZnO BRs for nc-Si:H solar cells. The texture of Ag and ZnO was optimized to achieve enhancement in photocurrent. The light trapping effect on photocurrent enhancement in solar cells was carefully investigated. Comparing to single-junction solar cells deposited on flat stainless steel substrates, the gain in Jsc by using Ag/ZnO BRs is 57% for nc-Si:H solar cells. This gain in Jsc is much higher than what has been achieved by advanced light trapping approaches using photonic structures or plasmonic light trapping reported in the literature. We achieved a Jsc of 29-30 mA/cm2 in a nc-Si:H single-junction solar cell with an intrinsic layer thickness of ∼2.5 μm. We compared the quantum efficiency of single-junction cells to the classical limit of fully randomized scattering and found that there is a 6-7 mA/cm2 difference between the measured Jsc and the classical limit, in which 3-4 mA/cm2 is in the long wavelength region. However, by taking into consideration the losses from reflection of the top contact, absorption in the doped layers, and imperfect reflection in the BRs, the difference disappears. This implies we have reached the practical limit if the scattering from randomly textured substrates is the only mechanism of light trapping. Therefore, we believe future research for improving photocurrent should be directed toward reducing (i) reflection loss by the top contact, the absorption in ZnO and at the Ag/ZnO interface, and (ii) p layer absorption.
Databáze: OpenAIRE