Early Neurodevelopmental Exposure to Low Lead Levels Induces Fronto-executive Dysfunctions That Are Recovered by Taurine Co-treatment in the Rat Attention Set-Shift Test: Implications for Taurine as a Psychopharmacotherapy Against Neurotoxicants
Autor: | Eric Khairi, Asma Iqbal, Bettina Tranquilee, Veni Thiruverkadu, Samantha Rubi, Nimra Hameed, Youngjoo Kim, Isra Ahmed, Sidrah Masood, Jourvonn C. Skeen, Teddy F. Dacius, Cyrus Jo, Eddy D. Barrerra, Lorenz S. Neuwirth, Jean-Martin Chrisphonte, Jalen R. Bonitto |
---|---|
Rok vydání: | 2019 |
Předmět: |
medicine.medical_specialty
Taurine business.industry Glutamate receptor Hippocampal formation Neuroprotection 03 medical and health sciences chemistry.chemical_compound 0302 clinical medicine Endocrinology Neurochemical chemistry Dopamine Internal medicine medicine 030212 general & internal medicine Serotonin business Neurotransmitter medicine.drug |
Zdroj: | Advances in Experimental Medicine and Biology ISBN: 9789811380228 |
DOI: | 10.1007/978-981-13-8023-5_70 |
Popis: | Lead (Pb2+) is a developmental neurotoxicant that causes lifelong cognitive dysfunctions. In particular, Pb2+-induced frontoexecutive dysfunctions emerge later in life when the cortex is fully myelinated, thereby permitting the ability to assess the extent to which Pb2+ has developmentally impacted higher order cognitive and behavioral systems. The present study evaluated the effects of developmental Pb2+-exposure (150 ppm lead acetate in the drinking water) in Long Evans Hooded rats through the Attention Set-Shift Test (ASST) between postnatal days (PND) 60–90. Treatment groups were comprised of Control (0 ppm), Perinatal (150 ppm), and Perinatal+Taurine (150 ppm + 0.05% Taurine in the drinking water) rats (N = 36; n = 6 per treatment group for each sex). Frontoexecutive functions were evaluated based on trials-to-criterion (TTC) and errors-to-criterion (ETC) measures for simple and complex discriminations (SD & CD), intradimensional and extradimensional shifts (ID & ED), as well as reversals (Rev) of the CD, I-, and ED stages, respectively. Post-testing, the prelimbic (PrL), infralimbic (IL), orbital ventral frontal (OV), orbital ventro-lateral (OVL), and hippocampal (HP) brain regions were extracted and processed through Liquid Chromatography/Mass Spectrophotometry (LC/MS) for determining the GABA and Taurine ratios relative to Glutamate, Dopamine, Norepinephrine, Epinephrine, and Serotonin. The ASST data revealed that Perinatal rats are negatively impacted by developmental Pb2+-exposures evidenced by increased TTC and ETC to learn the SD, ID, and ID-Rev with unique sex-based differences in frontoexecutive dysfunctions. Moreover, Perinatal+Taurine co-treated rats exhibited a recovery of the frontoexecutive dysfunctions observed in Perinatal rats to levels equivalent to Control rats across both sexes. The LC/MS data revealed altered brain sub-region specific patterns across the PrL, IL, OV, OVL, and HP in response to developmental Pb2+-exposure that produced an altered neurochemical signaling profile in a sex-dependent manner, which may underlie the observed frontoexecutive dysfunctions, cognitive inflexibility, and associated motivation deficits. When taurine co-treatment was administered concurrently for the duration of developmental Pb2+-exposure, the observed frontoexecutive dysfunctions were significantly reduced in both ASST task performance and neurochemical ratios that were comparable to Control levels for both sexes. Altogether, the data suggest that taurine co-treatment may facilitate neuroprotection, mitigate neurotransmitter excitability balancing, and perhaps ameliorate against neurotoxicant exposures in early development as a potential psychopharmacotherapy. |
Databáze: | OpenAIRE |
Externí odkaz: |