A short proof of the twelve-point theorem
Autor: | Mikhail Skopenkov, Matija Cencelj, Dušan Repovš |
---|---|
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | Mathematical Notes. 77:108-111 |
ISSN: | 1573-8876 0001-4346 |
DOI: | 10.1007/s11006-005-0010-6 |
Popis: | We present a short elementary proof of the following twelve-point theorem. Let M be a convex polygon with vertices at lattice points, containing a single lattice point in its interior. Denote by m (respectively, m*) the number of lattice points in the boundary of M (respectively, in the boundary of the dual polygon). Then m + m* = 12. |
Databáze: | OpenAIRE |
Externí odkaz: |