Integrating biomechanics in evolutionary studies, with examples from the amphidromous goby model system

Autor: Richard W. Blob, Kelly M. Diamond, Raphaël Lagarde, Takashi Maie, Kristine N. Moody, Amanda M. Palecek, Jessica L. Ward, Heiko L. Schoenfuss
Rok vydání: 2023
Předmět:
Zdroj: Journal of Experimental Biology. 226
ISSN: 1477-9145
0022-0949
DOI: 10.1242/jeb.244942
Popis: The functional capacities of animals are a primary factor determining survival in nature. In this context, understanding the biomechanical performance of animals can provide insight into diverse aspects of their biology, ranging from ecological distributions across habitat gradients to the evolutionary diversification of lineages. To survive and reproduce in the face of environmental pressures, animals must perform a wide range of tasks, some of which entail tradeoffs between competing demands. Moreover, the demands encountered by animals can change through ontogeny as they grow, sexually mature or migrate across environmental gradients. To understand how mechanisms that underlie functional performance contribute to survival and diversification across challenging and variable habitats, we have pursued diverse studies of the comparative biomechanics of amphidromous goby fishes across functional requirements ranging from prey capture and fast-start swimming to adhesion and waterfall climbing. The pan-tropical distribution of these fishes has provided opportunities for repeated testing of evolutionary hypotheses. By synthesizing data from the lab and field, across approaches spanning high-speed kinematics, selection trials, suction pressure recordings, mechanical property testing, muscle fiber-type measurements and physical modeling of bioinspired designs, we have clarified how multiple axes of variation in biomechanical performance associate with the ecological and evolutionary diversity of these fishes. Our studies of how these fishes meet both common and extreme functional demands add new, complementary perspectives to frameworks developed from other systems, and illustrate how integrating knowledge of the mechanical underpinnings of diverse aspects of performance can give critical insights into ecological and evolutionary questions.
Databáze: OpenAIRE