A method for localizing a reference object in a current image with several bright objects
Autor: | Alexander Sotnikov, Nataliіa Antonenko, Serhii Petrov, Nataliia Yeromina, Volodymyr Tarshyn |
---|---|
Rok vydání: | 2017 |
Předmět: |
0209 industrial biotechnology
Brightness media_common.quotation_subject Energy Engineering and Power Technology Binary number Value (computer science) 02 engineering and technology 01 natural sciences Industrial and Manufacturing Engineering Image (mathematics) 010309 optics Set (abstract data type) symbols.namesake Matrix (mathematics) 020901 industrial engineering & automation Management of Technology and Innovation 0103 physical sciences Contrast (vision) Electrical and Electronic Engineering Mathematics media_common Applied Mathematics Mechanical Engineering Computer Science Applications Control and Systems Engineering symbols Algorism Algorithm |
Zdroj: | Eastern-European Journal of Enterprise Technologies. 3:68-74 |
ISSN: | 1729-4061 1729-3774 |
DOI: | 10.15587/1729-4061.2017.101920 |
Popis: | To ensure the effective functioning of the correlation-extreme navigation systems (CENSs), a method is developed to localize a reference object (RO) in a current image (CI) with several bright objects. The peculiarity of the method consists in converting the CI to a binary unit by determining the average value of the background and setting it for the threshold of the image quantization, which in turn determines the amount of probabilities of errors of the first and second kinds as well as entails assigning the objects of the viewing surface (VS) and the backgrounds to two classes: the RO and the background. The CI model is represented by the brightness values of the corresponding objects and backgrounds of the VS in the differentiation elements. In the model of the current image, the RO has the highest brightness. Other objects that are similar in brightness and commensurate with the RO are categorized as false. The reference image (RI) is set by the contrast mark and the geometrical shape of the object, and it is binary. An algorism has been developed for localizing the RO in an image by searching for a fragment of a binary CI with a maximum value of units that coincides with the RI. The peculiarity of the algorithm consists in adapting the application procedure for the threshold conversion of a CI with an unknown value of the signal-noise ratio. A method has been developed to clarify the maximum value of the DF and to determine the coordinates of the RO in the field of the CI matrix. The method consists in the summation of the number of units of different sections and finding the highest value of the DF. The highest value of the DF coincides with the full match between the CI and the RI. An analytical expression has been obtained for the estimation of the probability of localizing the RO. The expression establishes dependence of the probability of localizing the RO on the parameters that are specified in the stages of solving the problem of localizing the RO, which are the identification, the multi-threshold selection, and the specification of the maximum DF. By modeling the process of forming the DF, numerical estimates have been obtained for the probability of localizing the RO. The research results indicate the feasibility of using the proposed method in a CENS in relation to a VS with several bright objects. |
Databáze: | OpenAIRE |
Externí odkaz: |