Disjoint Stable Matchings in Linear Time
Autor: | Aadityan Ganesh, Geevarghese Philip, Prajakta Nimbhorkar, H. V. Vishwa Prakash |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Graph-Theoretic Concepts in Computer Science ISBN: 9783030868376 WG |
DOI: | 10.1007/978-3-030-86838-3_7 |
Popis: | We show that given a Stable Matching instance \(G\) as input, we can find a largest collection of pairwise edge-disjoint stable matchings of \(G\) in time linear in the input size. This extends two classical results: 1. The Gale-Shapley algorithm, which can find at most two (“extreme”) pairwise edge-disjoint stable matchings of \(G\) in linear time, and 2. The polynomial-time algorithm for finding a largest collection of pairwise edge-disjoint perfect matchings (without the stability requirement) in a bipartite graph, obtained by combining Konig’s characterization with Tutte’s \(f\)-factor algorithm. |
Databáze: | OpenAIRE |
Externí odkaz: |