Popis: |
We propose a metric space of coalescing pairs of paths on which we are able to prove in a fairly direct way convergence of objects such as the persistence probability in the (one dimensional, nearest neighbor, symmetric) voter model or the diffusively rescaled weight distribution in a silo model (as well as the equivalent output distribution in a river basin model), interpreted in terms of (dual) diffusively rescaled coalescing random walks, to corresponding objects defined in terms of the Brownian web. |