A STRUCTURE THEORY OF (−1,−1)-FREUDENTHAL KANTOR TRIPLE SYSTEMS

Autor: Daniel Mondoc, Susumu Okubo, Noriaki Kamiya
Rok vydání: 2009
Předmět:
Zdroj: Bulletin of the Australian Mathematical Society. 81:132-155
ISSN: 1755-1633
0004-9727
DOI: 10.1017/s0004972709000732
Popis: In this paper we discuss the simplicity criteria of (−1,−1)-Freudenthal Kantor triple systems and give examples of such triple systems, from which we can construct some Lie superalgebras. We also show that we can associate a Jordan triple system to any (ε,δ)-Freudenthal Kantor triple system. Further, we introduce the notion ofδ-structurable algebras and connect them to (−1,δ)-Freudenthal Kantor triple systems and the corresponding Lie (super)algebra construction.
Databáze: OpenAIRE