A STRUCTURE THEORY OF (−1,−1)-FREUDENTHAL KANTOR TRIPLE SYSTEMS
Autor: | Daniel Mondoc, Susumu Okubo, Noriaki Kamiya |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Zdroj: | Bulletin of the Australian Mathematical Society. 81:132-155 |
ISSN: | 1755-1633 0004-9727 |
DOI: | 10.1017/s0004972709000732 |
Popis: | In this paper we discuss the simplicity criteria of (−1,−1)-Freudenthal Kantor triple systems and give examples of such triple systems, from which we can construct some Lie superalgebras. We also show that we can associate a Jordan triple system to any (ε,δ)-Freudenthal Kantor triple system. Further, we introduce the notion ofδ-structurable algebras and connect them to (−1,δ)-Freudenthal Kantor triple systems and the corresponding Lie (super)algebra construction. |
Databáze: | OpenAIRE |
Externí odkaz: |