Sonochemical versus reverse-precipitation synthesis of CuxO/Fe2O3/MoC nano-hybrid: removal of reactive dyes and evaluation of smartphone for colorimetric detection of organic dyes in water media

Autor: Mehrdad Malekshahi, Sina Khaknahad, Tahereh Rohani Bastami
Rok vydání: 2020
Předmět:
Zdroj: Environmental Science and Pollution Research. 27:9364-9381
ISSN: 1614-7499
0944-1344
Popis: In the present work, an ultrasound-assisted reverse-precipitation method was applied as a new approach for the synthesis of CuxO/Fe2O3/MoC. In the sonication method, a bath type sonicator as a simple, cost-effective, and low intensity sonicator was used. To determine the influence of ultrasonic waves on the morphology and application of nano-hybrid as nano-sorbent, it was also synthesized using the reverse precipitation method. The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), Zeta-potential measurement, and vibrating sample magnetometer (VSM) techniques. The XRD analysis confirmed that the sono-synthesized sample has higher crystallinity than the conventional one and CuO/Cu2O/MoC/Fe2O3 phase was obtained under ultrasound. According to the TEM and FESEM, sono-synthesized nanoparticles were rod-like with a width and length of 3 nm and 40 nm, respectively. Also, a well-dispersed shape and uniform morphology of nanoparticles were obtained using sonication. In comparison with the conventional nano-hybrid, this structure results in more void and accessible sites for adsorption of pollutants. The efficiency of resulting nanoparticles in adsorption of reactive dyes as a model of the pollutant was evaluated by sorption and sono-sorption processes. The sono-synthesized sample removed the pollutants more efficient than the conventional sample. The removal efficiencies were about 99% for the removal of reactive dyes using the sono-synthesized sample and sono-sorption method. Besides, determining factors including pH, pollutant concentration, temperature, and contact time were optimized in the sono-sorption and sorption processes. A colorimetric method based on RGB value was used to determine dye concentration in aqueous media. The images were taken by a smartphone and analyzed by ImageJ software. The accuracy of RGB results was confirmed by a UV–Vis spectrophotometer.
Databáze: OpenAIRE