Improving the Efficiency of QoE Crowdtesting

Autor: Ricky K. P. Mok, Ginga Kawaguti, Jun Okamoto
Rok vydání: 2020
Předmět:
Zdroj: QoEVMA @ ACM Multimedia
Popis: Crowdsourced testing is an increasingly popular way to study the quality of experience (QoE) of applications, such as video streaming and web. The diverse nature of the crowd provides a more realistic assessment environment than laboratory-based assessments allow. Because of the short life-span of crowdsourcing tasks, each subject spends a significant fraction of the experiment time just learning how it works. We propose a novel experiment design to conduct a longitudinal crowdsourcing study aimed at improving the efficiency of crowdsourced QoE assessments. On Amazon Mechanical Turk, we found that our design was 20% more cost-effective than crowdsourcing multiple one-off short experiments. Our results showed that subjects had a high level of revisit intent and continuously participated in our experiments. We replicated the video streaming QoE assessments in a traditional laboratory setting. Our study showed similar trends in the relationship between video bitrate and QoE, which confirm findings in prior research.
Databáze: OpenAIRE