On quasi-2-isometric operators
Autor: | S. M. Patel, Salah Mecheri |
---|---|
Rok vydání: | 2017 |
Předmět: |
Discrete mathematics
Mathematics::Functional Analysis Pure mathematics Algebra and Number Theory Mathematics::Operator Algebras Nuclear operator 010102 general mathematics 010103 numerical & computational mathematics Operator theory Compact operator 01 natural sciences Operator space Compact operator on Hilbert space Quasinormal operator Weak operator topology Multiplication operator Mathematics::Metric Geometry 0101 mathematics Mathematics |
Zdroj: | Linear and Multilinear Algebra. 66:1019-1025 |
ISSN: | 1563-5139 0308-1087 |
DOI: | 10.1080/03081087.2017.1335283 |
Popis: | We introduce the class of quasi-2-isometric operators on Hilbert space. This class extends the classes of 2-isometric operators due to Agler and Stankus and quasi-isometries by S.M.Patel. An operator T on a complex Hilbert space is called quasi-2-isometry if In the present article, we give operator matrix representation of quasi-2-isometric operator in order to obtain spectral properties of this operator. |
Databáze: | OpenAIRE |
Externí odkaz: |