On full friendly index sets of 1-level and 2-levels N-grids
Autor: | Sin-Min Lee, Guang-Yi Sun, Zhen-Bin Gao |
---|---|
Rok vydání: | 2016 |
Předmět: |
Vertex (graph theory)
Applied Mathematics 020206 networking & telecommunications 0102 computer and information sciences 02 engineering and technology 01 natural sciences Graph Combinatorics 010201 computation theory & mathematics 0202 electrical engineering electronic engineering information engineering Discrete Mathematics and Combinatorics Friendly-index set Arithmetic Mathematics |
Zdroj: | Discrete Applied Mathematics. 211:68-78 |
ISSN: | 0166-218X |
DOI: | 10.1016/j.dam.2016.01.024 |
Popis: | Let G be a graph with vertex set V ( G ) and edge set E ( G ) . A labeling f : V ( G ) ź Z 2 induces an edge labeling f ź : E ( G ) ź Z 2 defined by f ź ( x y ) = f ( x ) + f ( y ) , for each edge x y ź E ( G ) . For i ź Z 2 , let v f ( i ) = | { v ź V ( G ) : f ( v ) = i } | and e f ź ( i ) = | { e ź E ( G ) : f ź ( e ) = i } | . A labeling f of a graph G is said to be friendly if | v f ( 1 ) - v f ( 0 ) | ź 1 . The full friendly index set of a graph G , denoted F F I ( G ) , is defined as { e f ź ( 1 ) - e f ź ( 0 ) : the vertex labeling f is friendly } . We investigate the full friendly index sets of 1-level and 2-levels N-grids. |
Databáze: | OpenAIRE |
Externí odkaz: |