On full friendly index sets of 1-level and 2-levels N-grids

Autor: Sin-Min Lee, Guang-Yi Sun, Zhen-Bin Gao
Rok vydání: 2016
Předmět:
Zdroj: Discrete Applied Mathematics. 211:68-78
ISSN: 0166-218X
DOI: 10.1016/j.dam.2016.01.024
Popis: Let G be a graph with vertex set V ( G ) and edge set E ( G ) . A labeling f : V ( G ) ź Z 2 induces an edge labeling f ź : E ( G ) ź Z 2 defined by f ź ( x y ) = f ( x ) + f ( y ) , for each edge x y ź E ( G ) . For i ź Z 2 , let v f ( i ) = | { v ź V ( G ) : f ( v ) = i } | and e f ź ( i ) = | { e ź E ( G ) : f ź ( e ) = i } | . A labeling f of a graph G is said to be friendly if | v f ( 1 ) - v f ( 0 ) | ź 1 . The full friendly index set of a graph G , denoted F F I ( G ) , is defined as { e f ź ( 1 ) - e f ź ( 0 ) : the vertex labeling f is friendly } . We investigate the full friendly index sets of 1-level and 2-levels N-grids.
Databáze: OpenAIRE