A review on 2D MoS2 cocatalysts in photocatalytic H2 production
Autor: | Zizhan Liang, Xin Li, Yun Hau Ng, Peng Zhang, Quanjun Xiang, Rongchen Shen |
---|---|
Rok vydání: | 2020 |
Předmět: |
Materials science
Polymers and Plastics Mechanical Engineering Composite number Heteroatom Doping Metals and Alloys Light irradiation Heterojunction Nanotechnology 02 engineering and technology 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences 0104 chemical sciences Mechanics of Materials Materials Chemistry Ceramics and Composites Photocatalysis Water splitting 0210 nano-technology Hydrogen production |
Zdroj: | Journal of Materials Science & Technology. 56:89-121 |
ISSN: | 1005-0302 |
DOI: | 10.1016/j.jmst.2020.04.032 |
Popis: | Owing to their unique physicochemical, optical and electrical properties, two-dimensional (2D) MoS2 cocatalysts have been widely applied in designing and developing highly efficient composite photocatalysts for hydrogen generation under suitable light irradiation. In this review, we first elaborated on the fundamental aspects of 2D MoS2 cocatalysts to include the structural design principles, synthesis strategies, strengths and challenges. Subsequently, we thoroughly highlighted and discussed the modification strategies of 2D MoS2 H2-evolution cocatalysts, including doping heteroatoms (e.g. metals, non-metals, and co-doping), designing interfacial coupling morphologies, controlling the physical properties (e.g. thickness, size, structural defects or pores), exposing the reactive facets or edge sites, constructing cocatalyst heterojunctions, engineering the interfacial bonds and confinement effects. In the future, the forefront challenges in understanding and in precise controlling of the active sites at molecular level or atomic level should be carefully studied, while various potential mechanisms of photogenerated-electrons interactions should be proposed. The applications of MoS2 cocatalyst in the overall water splitting are also expected. This review may offer new inspiration for designing and constructing novel and efficient MoS2-based composite photocatalysts for highly efficient photocatalytic hydrogen evolution. |
Databáze: | OpenAIRE |
Externí odkaz: |