On a finite element method for measure-valued optimal control problems governed by the 1D generalized wave equation
Autor: | Alexander Zlotnik, Boris Vexler, Philip Trautmann |
---|---|
Rok vydání: | 2018 |
Předmět: |
0209 industrial biotechnology
010102 general mathematics Mathematical analysis Bilinear interpolation 02 engineering and technology General Medicine Optimal control Wave equation 01 natural sciences Measure (mathematics) Stability (probability) Finite element method 020901 industrial engineering & automation Error analysis 0101 mathematics Mathematics Variable (mathematics) |
Zdroj: | Comptes Rendus Mathematique. 356:523-531 |
ISSN: | 1631-073X |
DOI: | 10.1016/j.crma.2018.02.011 |
Popis: | The paper deals with the optimal control problems governed by the 1D wave equation with variable coefficients and the control spaces of either measure-valued functions L w ⁎ 2 ( I , M ( Ω ) ) or vector measures M ( Ω , L 2 ( I ) ) . Bilinear finite element discretizations are constructed and their stability and error analysis is accomplished. |
Databáze: | OpenAIRE |
Externí odkaz: |