Randomized isomorphic Dvoretzky theorem

Autor: Nicole Tomczak-Jaegermann, Piotr Mankiewicz, Alexander E. Litvak
Rok vydání: 2002
Předmět:
Zdroj: Comptes Rendus Mathematique. 335:345-350
ISSN: 1631-073X
DOI: 10.1016/s1631-073x(02)02476-7
Popis: Let K be a symmetric convex body in R N for which B 2 N is the ellipsoid of minimal volume. We provide estimates for the geometric distance of a ‘typical’ rank n projection of K to B 2 n , for 1⩽ n N . Known examples show that the resulting estimates are optimal (up to numerical constants) even for the Banach–Mazur distance. To cite this article: A. Litvak et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 345–350.
Databáze: OpenAIRE