Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid
Autor: | K. KleinOsowski, David J. Lilja, A.J. KleinOsowski, P. Ranganath, V.V. Pai, M. Subramony, V. Rangarajan |
---|---|
Rok vydání: | 2006 |
Předmět: |
Engineering
business.industry Hardware description language Nanotechnology Fault tolerance Integrated circuit computer.software_genre Grid Computer Science Applications law.invention Logic synthesis Grid computing Robustness (computer science) law Lookup table Electrical and Electronic Engineering business computer computer.programming_language |
Zdroj: | IEEE Transactions On Nanotechnology. 5:575-586 |
ISSN: | 1536-125X |
DOI: | 10.1109/tnano.2006.880901 |
Popis: | Advanced molecular nanotechnology devices are predicted to have exceedingly high transient fault rates and large numbers of inherent device defects compared to conventional CMOS devices. We describe and evaluate the Recursive NanoBox Processor Grid as an application specific, fault-tolerant, parallel computing system designed for fabrication with unreliable nanotechnology devices. In this study we construct hardware description language models of a NanoBox Processor cell and evaluate the effectiveness of our recursive fault masking approach in the presence of random errors. Our analysis shows that complex circuits constructed with encoded lookup tables can operate correctly despite 2% of the nodes being in error. The circuits operate partially correct with up to 4% of the nodes being in error |
Databáze: | OpenAIRE |
Externí odkaz: |