Transfer of the methicillin resistance genomic island among staphylococci by conjugation
Autor: | Sam Boundy, Gordon L. Archer, M. D. Ray |
---|---|
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Genetics SCCmec 030106 microbiology Chromosome respiratory system biochemical phenomena metabolism and nutrition Biology bacterial infections and mycoses medicine.disease_cause biology.organism_classification Microbiology Methicillin-resistant Staphylococcus aureus body regions 03 medical and health sciences Plasmid Staphylococcus aureus Staphylococcus epidermidis Genomic island medicine Mobile genetic elements Molecular Biology |
Zdroj: | Molecular Microbiology. 100:675-685 |
ISSN: | 0950-382X |
Popis: | Methicillin resistance creates a major obstacle for treatment of Staphylococcus aureus infections. The resistance gene, mecA, is carried on a large (20 kb to > 60 kb) genomic island, staphylococcal cassette chromosome mec (SCCmec), that excises from and inserts site-specifically into the staphylococcal chromosome. However, although SCCmec has been designated a mobile genetic element, a mechanism for its transfer has not been defined. Here we demonstrate the capture and conjugative transfer of excised SCCmec. SCCmec was captured on pGO400, a mupirocin-resistant derivative of the pGO1/pSK41 staphylococcal conjugative plasmid lineage, and pGO400::SCCmec (pRM27) was transferred by filter-mating into both homologous and heterologous S. aureus recipients representing a range of clonal complexes as well as S. epidermidis. The DNA sequence of pRM27 showed that SCCmec had been transferred in its entirety and that its capture had occurred by recombination between IS257/431 elements present on all SCCmec types and pGO1/pSK41 conjugative plasmids. The captured SCCmec excised from the plasmid and inserted site-specifically into the chromosomal att site of both an isogenic S. aureus and a S. epidermidis recipient. These studies describe a means by which methicillin resistance can be environmentally disseminated and a novel mechanism, IS-mediated recombination, for the capture and conjugative transfer of genomic islands. |
Databáze: | OpenAIRE |
Externí odkaz: |