Popis: |
Density functional theory (DFT) is used to study the electronic and magnetic properties of different surfaces of NiO. The electronic and magnetic properties of forming different surfaces of Nicoles such as (001), (110), (101), and (111) were studied using density functional theory calculations from the first principle used. Our result found that the band gap changed dramatically, and the spin projected density of state changed the dominations of the majority and minority of spin channels around the Fermi level, and the charge density of the bulk and NiO (111) surface is also discussed. However, the magnetic properties observed the increasing and decreasing spin magnetic moments and found significant magnetic moments for O atoms in the NiO (101) slab. These features lead to a surprisingly diverse set of different surface electronic structures. The study observed that DFT + U density functional theory might be a valuable method for high-throughput workflows that require reliable band gap predictions at a moderate computational cost. |