Moduli space theory for constant mean curvature surfaces immersed in space-forms
Autor: | Karen Uhlenbeck, Alexandre C. Gonçalves |
---|---|
Rok vydání: | 2007 |
Předmět: |
Statistics and Probability
Mean curvature flow Mean curvature Mathematical analysis Curvature Constant curvature Constant-mean-curvature surface Total curvature Mathematics::Differential Geometry Geometry and Topology Sectional curvature Statistics Probability and Uncertainty Analysis Mathematics Scalar curvature |
Zdroj: | Communications in Analysis and Geometry. 15:299-305 |
ISSN: | 1944-9992 1019-8385 |
DOI: | 10.4310/cag.2007.v15.n2.a4 |
Popis: | A new method is presented for solving the Gauss-Codazzi equations for a compact Riemann surface to be immersed in a 3-manifold of constant curvature. In the negative curvature case, the moduli for such embeddings are cohomology classes of (0,2) forms. |
Databáze: | OpenAIRE |
Externí odkaz: |