Moduli space theory for constant mean curvature surfaces immersed in space-forms

Autor: Karen Uhlenbeck, Alexandre C. Gonçalves
Rok vydání: 2007
Předmět:
Zdroj: Communications in Analysis and Geometry. 15:299-305
ISSN: 1944-9992
1019-8385
DOI: 10.4310/cag.2007.v15.n2.a4
Popis: A new method is presented for solving the Gauss-Codazzi equations for a compact Riemann surface to be immersed in a 3-manifold of constant curvature. In the negative curvature case, the moduli for such embeddings are cohomology classes of (0,2) forms.
Databáze: OpenAIRE