A VECTOR FIELD APPROACH TO MAPPING CLASS ACTIONS
Autor: | Nikola Lakic, Frederick P. Gardiner |
---|---|
Rok vydání: | 2006 |
Předmět: | |
Zdroj: | Proceedings of the London Mathematical Society. 92:403-427 |
ISSN: | 1460-244X 0024-6115 |
DOI: | 10.1112/s0024611505015558 |
Popis: | We present a vector field method for showing that certain subgroups of the mapping class group $\Gamma$ of a Riemann surface of infinite topological type act properly discontinuously. We apply the method to the group of homotopy classes of quasiconformal self-maps of the complement $\Omega$ of a Cantor set in $\mathbb{C}$. When the Cantor set has bounded geometric type, we show that $\Gamma(\Omega)$ acts on the Teichmüller space $T(\Omega)$ properly discontinuously. Also, we apply the same method to show that the pure mapping class group $\Gamma_0(\Omega \cup \{\infty\})$ acts properly discontinuously on $T(\Omega \cup \{\infty\})$. |
Databáze: | OpenAIRE |
Externí odkaz: |