Admissible Hyper-Complex Pseudo-Hermitian Structures
Autor: | S. V. Galaev |
---|---|
Rok vydání: | 2018 |
Předmět: |
Riemann curvature tensor
Pure mathematics Hypercomplex number General Mathematics 010102 general mathematics Zero (complex analysis) Structure (category theory) Lambda 01 natural sciences Hermitian matrix 010101 applied mathematics symbols.namesake Distribution (mathematics) symbols Mathematics::Differential Geometry 0101 mathematics Connection (algebraic framework) Mathematics |
Zdroj: | Lobachevskii Journal of Mathematics. 39:71-76 |
ISSN: | 1818-9962 1995-0802 |
DOI: | 10.1134/s1995080218010122 |
Popis: | The notions of an admissible pseudo-Kahlerian structure and of an admissible hypercomplex pseudo-Hermitian structure are introduced. On the distribution D of an almost contact structure (M, $$\vec \xi $$ , η, φ, g, D) with a Norden metric, using a prolonged connection ∇N, an admissible almost hyper-complex pseudo-Hermitian structure ( $$D,{J_1},{J_2},{J_3},\vec u,\lambda = \eta \circ {\pi _*},\tilde g,\tilde D$$ ) is defined. It is shown that if the initial almost contact structure with a Norden metric is an admissible pseudo- Kahlerian structure with zero Schouten curvature tensor, then the induced admissible almost hypercomplex pseudo-Hermitian structure on the distribution D is integrable. |
Databáze: | OpenAIRE |
Externí odkaz: |