Admissible Hyper-Complex Pseudo-Hermitian Structures

Autor: S. V. Galaev
Rok vydání: 2018
Předmět:
Zdroj: Lobachevskii Journal of Mathematics. 39:71-76
ISSN: 1818-9962
1995-0802
DOI: 10.1134/s1995080218010122
Popis: The notions of an admissible pseudo-Kahlerian structure and of an admissible hypercomplex pseudo-Hermitian structure are introduced. On the distribution D of an almost contact structure (M, $$\vec \xi $$ , η, φ, g, D) with a Norden metric, using a prolonged connection ∇N, an admissible almost hyper-complex pseudo-Hermitian structure ( $$D,{J_1},{J_2},{J_3},\vec u,\lambda = \eta \circ {\pi _*},\tilde g,\tilde D$$ ) is defined. It is shown that if the initial almost contact structure with a Norden metric is an admissible pseudo- Kahlerian structure with zero Schouten curvature tensor, then the induced admissible almost hypercomplex pseudo-Hermitian structure on the distribution D is integrable.
Databáze: OpenAIRE