Autor: |
Martin B. van Gijzen, Jens-Peter M. Zemke, Gerard L. G. Sleijpen |
Rok vydání: |
2014 |
Předmět: |
|
Zdroj: |
Numerical Linear Algebra with Applications. 22:1-25 |
ISSN: |
1070-5325 |
DOI: |
10.1002/nla.1935 |
Popis: |
We give two generalizations of the induced dimension reduction (IDR) approach for the solution of linear systems. We derive a flexible and a multi-shift quasi-minimal residual IDR variant. These variants are based on a generalized Hessenberg decomposition. We present a new, more stable way to compute basis vectors in IDR. Numerical examples are presented to show the effectiveness of these new IDR variants and the new basis compared with existing ones and to other Krylov subspace methods. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|