A Spherical Joint Robotic End-Effector for the Expanded Endoscopic Endonasal Approach
Autor: | Hani J. Marcus, Neil Dorward, George Dwyer, Danail Stoyanov, Lukas Lindenroth, Petros Giataganas, Emmanouil Dimitrakakis |
---|---|
Rok vydání: | 2020 |
Předmět: |
0209 industrial biotechnology
medicine.medical_specialty business.industry 02 engineering and technology Robot end effector Natural orifice Spherical joint Transsphenoidal approach Surgery law.invention 03 medical and health sciences 020901 industrial engineering & automation 0302 clinical medicine medicine.anatomical_structure Medical robotics law Medicine Neurosurgery business 030217 neurology & neurosurgery Nose |
Zdroj: | Journal of Medical Robotics Research. :2150002 |
ISSN: | 2424-9068 2424-905X |
DOI: | 10.1142/s2424905x21500021 |
Popis: | The endonasal transsphenoidal approach allows surgeons to access the pituitary gland through the natural orifice of the nose. Recently, surgeons have also described an Expanded Endoscopic Endonasal Approach (EEEA) for the treatment of other tumours around the base of the brain. However, operating in this way with nonarticulated tools is technically very difficult and not widely adopted. The goal of this study is to develop an articulated end-effector for a novel handheld robotic tool for the EEEA. We present a design and implementation of a 3.6[Formula: see text]mm diameter, three degrees-of-freedom, tendon-driven robotic end-effector that, contrary to rigid instruments which operate under fulcrum, will give the surgeon the ability to reach areas on the surface of the brain that were previously inaccessible. We model the end-effector kinematics in simulation to study the theoretical workspace it can achieve prior to implementing a test-bench device to validate the efficacy of the end-effector. We find promising repeatability of the proposed robotic end-effector of 0.42[Formula: see text]mm with an effective workspace with limits of [Formula: see text], which is greater than conventional neurosurgical tools. Additionally, although the tool’s end-effector has a small enough diameter to operate through the narrow nasal access path and the constrained workspace of EEEA, it showcased promising structural integrity and was able to support approximately a 6N load, despite a large deflection angle the limiting of which is scope of future work. These preliminary results indicate the end-effector is a promising first step towards developing appropriate handheld robotic instrumentation to drive EEEA adoption. |
Databáze: | OpenAIRE |
Externí odkaz: |