The essential spectrum of periodically stationary solutions of the complex Ginzburg–Landau equation

Autor: Jeremy L. Marzuola, Yuri Latushkin, John Zweck, Christopher K. R. T. Jones
Rok vydání: 2020
Předmět:
Zdroj: Journal of Evolution Equations. 21:3313-3329
ISSN: 1424-3202
1424-3199
DOI: 10.1007/s00028-020-00640-8
Popis: We establish the existence and regularity properties of a monodromy operator for the linearization of the cubic–quintic complex Ginzburg–Landau equation about a periodically stationary (breather) solution. We derive a formula for the essential spectrum of the monodromy operator in terms of that of the associated asymptotic linear differential operator. This result is obtained using the theory of analytic semigroups under the assumption that the Ginzburg–Landau equation includes a spectral filtering (diffusion) term. We discuss applications to the stability of periodically stationary pulses in ultrafast fiber lasers.
Databáze: OpenAIRE