Fundamental solution of a higher step Grushin type operator

Autor: Chisato Iwasaki, Wolfram Bauer, Kenro Furutani
Rok vydání: 2015
Předmět:
Zdroj: Advances in Mathematics. 271:188-234
ISSN: 0001-8708
DOI: 10.1016/j.aim.2014.11.017
Popis: We examine a class of Grushin type operators P k where k ∈ N 0 defined in (1.1). The operators P k are non-elliptic and degenerate on a sub-manifold of R N + l . Geometrically they arise via a submersion from a sub-Laplace operator on a nilpotent Lie group of step k + 1 . We explain the geometric framework and prove some analytic properties such as essential self-adjointness. The main purpose of the paper is to give an explicit expression of the fundamental solution of P k . Our methods rely on an appropriate change of coordinates and involve the theory of Bessel and modified Bessel functions together with Weber's second exponential integral.
Databáze: OpenAIRE