Fundamental solution of a higher step Grushin type operator
Autor: | Chisato Iwasaki, Wolfram Bauer, Kenro Furutani |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Advances in Mathematics. 271:188-234 |
ISSN: | 0001-8708 |
DOI: | 10.1016/j.aim.2014.11.017 |
Popis: | We examine a class of Grushin type operators P k where k ∈ N 0 defined in (1.1). The operators P k are non-elliptic and degenerate on a sub-manifold of R N + l . Geometrically they arise via a submersion from a sub-Laplace operator on a nilpotent Lie group of step k + 1 . We explain the geometric framework and prove some analytic properties such as essential self-adjointness. The main purpose of the paper is to give an explicit expression of the fundamental solution of P k . Our methods rely on an appropriate change of coordinates and involve the theory of Bessel and modified Bessel functions together with Weber's second exponential integral. |
Databáze: | OpenAIRE |
Externí odkaz: |