Popis: |
The chemo-hydro-mechanical (CHM) interaction between swelling Eurobitum radioactive bituminized waste (BW) and Boom Clay is investigated to assess the feasibility of geological disposal for the long-term management of this waste. These so-called compatibility studies include laboratory water uptake tests at the Belgian Nuclear Research Center SCK•CEN, and the development of a coupled CHM formulation for Eurobitum by the International Center for Numerical Methods and Engineering (CIMNE, Polytechnical University of Cataluna, Spain). In the water uptake tests, the osmosis-induced swelling, pressure increase and NaNO3 leaching of small cylindrical BW samples (diameter 38 mm, height 10 mm) is studied under constant total stress conditions and nearly constant volume conditions; the actual geological disposal conditions should be intermediate between these extremes. Two nearly constant volume tests were stopped after 1036 and 1555 days to characterize the morphology of the hydrated BW samples and to visualize the hydrated part with microfocus X-ray Computer Tomography (μCT) and Environmental Scanning Electron Microscopy (ESEM). In parallel, a coupled CHM formulation is developed that describes chemically and hydraulically coupled flow processes in porous materials with salt crystals, and that incorporates a porosity dependent membrane efficiency, permeability and diffusivity. When Eurobitum BW is hydrated in (nearly) constant volume conditions, the osmosis-induced water uptake results in an increasing pressure to values that can be (in theory) as high as 42.8 MPa, being the osmotic pressure of a saturated NaNO3 solution. After about four years of hydration in nearly constant volume water uptake tests, pressures up to 20 MPa are measured. During this hydration period only the outer layers with a thickness of 1–2 mm were hydrated (as derived from μCT and ESEM analyses), and only about 10–20% of the initial NaNO3 content was released by the samples. In the studied test conditions, the rates of water uptake and NaNO3 leaching are low because of the low porosity, and thus low permeability, of the hydrated BW samples in combination with a highly efficient semi-permeable bitumen membrane. In contrast to the hydration in free swelling conditions, the increase in porosity is limited by the high pressures in the nearly constant volume tests. Furthermore, at the interface with the stainless steel filters, a low permeable re-compressed bitumen layer is formed, as observed on the ESEM images. The experimental results of pressure increase and NaNO3 leaching, as well as observations on μCT and ESEM images (e.g. compression of leached layers, high dissolved NaNO3 concentration in hydrated BW after about four years), were reproduced rather successfully by the coupled CHM formulation for Eurobitum BW. A long-term model prediction of the evolution of the osmosis-induced pressure in the nearly constant volume tests shows that the pressure would reach a maximal value of about 20 MPa after about 5.5 years, after which the pressure would start to decrease. After 10,000 days (∼27 years) the pressure would have decreased to a value of ∼2 MPa. |