Autor: |
Brent N. Holben, Jhoon Kim, Itaru Sano, Sony Mukai, Thomas F. Eck, David M. Giles, Joel S. Schafer, Aliaksandr Sinyuk, Ilya Slutsker, Alexander Smirnov, Mikhail Sorokin, Bruce E. Anderson, Huizheng Che, Myungje Choi, James E. Crawford, Richard A. Ferrare, Michael J. Garay, Ukkyo Jeong, Mijin Kim, Woogyung Kim, Nichola Knox, Zhengqiang Li, Hwee S. Lim, Yang Liu, Hal Maring, Makiko Nakata, Kenneth E. Pickering, Stuart Piketh, Jens Redemenn, Jeffrey S. Reid, Santo Salinas, Sora Seo, Fuyi Tan, Sachchida N. Tripathi, Owen B. Toon, Qingyang Xiao |
Rok vydání: |
2017 |
DOI: |
10.5194/acp-2016-1182 |
Popis: |
The AErosol RObotic NETwork (AERONET) program over the past 24 years has provided highly accurate remote sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution that includes all continents and many island sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial resolution ground-based remote sensing networks. An effort to address this need resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote sensing comparison and analysis of local to meso-scale variability of aerosol properties. This paper describes the networks that that have contributed and will continue to contribute to that body of research. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|