Clustering of Conversational Bandits for User Preference Learning and Elicitation

Autor: Canzhe Zhao, Junda Wu, Shuai Li, Jingyang Li, Tong Yu
Rok vydání: 2021
Předmět:
Zdroj: CIKM
Popis: Conversational recommender systems elicit user preference via interactive conversational interactions. By introducing conversational key-terms, existing conversational recommenders can effectively reduce the need for extensive exploration in a traditional interactive recommender. However, there are still limitations of existing conversational recommender approaches eliciting user preference via key-terms. First, the key-term data of the items needs to be carefully labeled, which requires a lot of human efforts. Second, the number of the human labeled key-terms is limited and the granularity of the key-terms is fixed, while the elicited user preference is usually from coarse-grained to fine-grained during the conversations. In this paper, we propose a clustering of conversational bandits algorithm. To avoid the human labeling efforts and automatically learn the key-terms with the proper granularity, we online cluster the items and generate meaningful key-terms for the items during the conversational interactions. Our algorithm is general and can also be used in the user clustering when the feedback from multiple users is available, which further leads to more accurate learning and generations of conversational key-terms. We analyze the regret bound of our learning algorithm. In the empirical evaluations, without using any human labeled key-terms, our algorithm effectively generates meaningful coarse-to-fine grained key-terms and performs as well as or better than the state-of-the-art baseline.
Databáze: OpenAIRE