Effect of Impactor velocity and boundary condition on low velocity impact finite element modelling of CFRP composite laminates
Autor: | K. R. Kaware, M. S. Kotambkar |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | IOP Conference Series: Materials Science and Engineering. 1004:012018 |
ISSN: | 1757-899X 1757-8981 |
Popis: | The demand for Composite structures is increasing in different engineering fields such as automobile, aircraft, civil because of its higher specific mechanical properties. It’s very important to consider failure modes like fiber breakage, delamination, matrix cracking, etc. when it is impacted by a foreign object such as dropping of tool (impact type events). Susceptibility of damage due to low velocity impact is more in the laminated composite structures than metal. It is important to study the response of composite for varying velocities with different boundary conditions in case of low velocity impact analysis. Thus, this paper presents the combined effect of different boundary conditions with varying velocities of impactor on low velocity impact modelling of CFRP composite laminates. Numerical analysis is performed on T700GC/M21 material with layup [02/452/902/-452]s to study the force-time/displacement curve. Numerical analysis is performed using ABAQUS 6.14. First, Numerical analysis is carried out for impactor velocities varying from 2.5 m/s to 10 m/s. In ABAQUS/Explicit, two boundary conditions i.e. simply supported edges boundary condition SSSS and Clamped supported edges, CCCC are used to study the force-time/displacement curve. Out of that numerical results of impactor velocity 5 m/s with boundary condition SSSS is validated with results of literature by studying force-time/displacement curves. The numerical findings revealed that; as impactor velocity increases, the force and displacement also increases. Also, current simulation results are closely matching with the existing numerical and experimental data. |
Databáze: | OpenAIRE |
Externí odkaz: |