Smart UV-spectrophotometric platforms for rapid green analysis of miconazole nitrate and nystatin in their combined suppositories and in vitro dissolution testing
Autor: | Wafaa S. Hassan, Ahmed R. Mohamed, Manal S. Elmasry, Rania A. Sayed |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Drug Development and Industrial Pharmacy. 47:1469-1480 |
ISSN: | 1520-5762 0363-9045 |
DOI: | 10.1080/03639045.2021.2001490 |
Popis: | Miconazole nitrate (MIC) and nystatin (NYS) combination has proven its effectiveness as a prodigious therapy to cure women's common infections; vaginal candidiasis and vaginal mycosis. Herein, six smart UV-spectrophotometric platforms depending on minimal mathematical manipulation steps were first introduced for the simultaneous green analysis of MIC and NYS in their pure forms and commercial vaginal suppositories without any preliminary separation steps. These platforms included dual-wavelength, ratio difference, mean centering of ratio spectra, first derivative ratio, ratio subtraction, and absorption correction methods. All of the aforementioned platforms could estimate MIC in a linear range of 90-900 µg/ml. While NYS was computed directly by zero-order spectrophotometry at its λmax (304 nm) in a linear range of 1-15 µg/ml without any interference by MIC even in low or high concentrations. Dual-wavelength and zero-order spectrophotometric platforms were successfully applied to study the dissolution profile of MIC and NYS in their combined formulation in compliance with FDA recommendations without excipients interference. According to ICH guidelines, all platforms were validated regarding the accuracy, precision, and selectivity producing satisfactory results within the accepted limits. Also, the suggested platforms' results were statistically compared with each other and with those of the reported HPLC platform revealing no significant difference concerning accuracy and precision at p = .05. Accordingly, all proposed platforms are regarded as economic and eco-friendly alternatives to the expensive chromatographic platforms that utilize hazardous organic solvents during the analysis of cited drugs. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |