Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation
Autor: | Marcel Mikl, Tobias Jahnke |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | IMA Journal of Numerical Analysis. 39:1818-1859 |
ISSN: | 1464-3642 0272-4979 |
DOI: | 10.1093/imanum/dry045 |
Popis: | Modeling long-haul data transmission through dispersion-managed optical fiber cables leads to a nonlinear Schrödinger equation where the linear part is multiplied by a large, discontinuous and rapidly changing coefficient function. Typical solutions oscillate with high frequency and have low regularity in time, such that traditional numerical methods suffer from severe step size restrictions and typically converge only with low order. We construct and analyse a norm-conserving, uniformly convergent time-integrator called the adiabatic exponential midpoint rule by extending techniques developed in Jahnke & Mikl (2018, Adiabatic midpoint rule for the dispersion-managed nonlinear Schrödinger equation. Numer. Math., 138, 975–1009). This method is several orders of magnitude more accurate than standard schemes for a relevant set of parameters. In particular, we prove that the accuracy of the method improves considerably if the step size is chosen in a special way. |
Databáze: | OpenAIRE |
Externí odkaz: |