Modular Lagrangians and the theta multiplier
Autor: | Dennis Lee Johnson, John J. Millson |
---|---|
Rok vydání: | 1990 |
Předmět: | |
Zdroj: | Inventiones Mathematicae. 100:143-165 |
ISSN: | 1432-1297 0020-9910 |
DOI: | 10.1007/bf01231183 |
Popis: | Let V be a free module over Z/4 of rank 2 n and let (,) be a non-singular skew form on V. Let F" denote the reduction of V modulo 2 and let Q be a hyperbolic (i.e. Arf invariant zero) quadratic form on P with (,) as associated bilinear form. We let A(V) denote the set of oriented Lagrangians (i.e. free totally-isotropic submodules of rank n) in V and Ao(V)cA(V) the subset of those L in A(V) whose reductions modulo 2 are totally isotropic for Q. We call such an L an oriented isotropic Lagrangian. We will study a certain function m on Ao(V)x Ao(V) with values in the group of fourth roots of unity. The function m is skew-symmetric (m(M, L)= re(L, M)-t) and is a 1-cocycle. By this |
Databáze: | OpenAIRE |
Externí odkaz: |