Information Bottleneck Disentanglement for Identity Swapping

Autor: Zhaoyang Li, Chaoyou Fu, Ran He, Gege Gao, Huaibo Huang
Rok vydání: 2021
Předmět:
Zdroj: CVPR
Popis: Improving the performance of face forgery detectors often requires more identity-swapped images of higher-quality. One core objective of identity swapping is to generate identity-discriminative faces that are distinct from the target while identical to the source. To this end, properly disentangling identity and identity-irrelevant information is critical and remains a challenging endeavor. In this work, we propose a novel information disentangling and swapping network, called InfoSwap, to extract the most expressive information for identity representation from a pre-trained face recognition model. The key insight of our method is to formulate the learning of disentangled representations as optimizing an information bottleneck tradeoff, in terms of finding an optimal compression of the pretrained latent features. Moreover, a novel identity contrastive loss is proposed for further disentanglement by requiring a proper distance between the generated identity and the target. While the most prior works have focused on using various loss functions to implicitly guide the learning of representations, we demonstrate that our model can provide explicit supervision for learning disentangled representations, achieving impressive performance in generating more identity-discriminative swapped faces.
Databáze: OpenAIRE