A geometric proof of the upper bound on the size of partial spreads in $H(4n+1,$q2$)$
Autor: | Frédéric Vanhove |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Advances in Mathematics of Communications. 5:157-160 |
ISSN: | 1930-5346 |
DOI: | 10.3934/amc.2011.5.157 |
Popis: | We give a geometric proof of the upper bound of q2n+1$+1$ on the size of partial spreads in the polar space $H(4n+1,$q2$)$. This bound is tight and has already been proved in an algebraic way. Our alternative proof also yields a characterization of the partial spreads of maximum size in $H(4n+1,$q2$)$. |
Databáze: | OpenAIRE |
Externí odkaz: |