A geometric proof of the upper bound on the size of partial spreads in $H(4n+1,$q2$)$

Autor: Frédéric Vanhove
Rok vydání: 2011
Předmět:
Zdroj: Advances in Mathematics of Communications. 5:157-160
ISSN: 1930-5346
DOI: 10.3934/amc.2011.5.157
Popis: We give a geometric proof of the upper bound of q2n+1$+1$ on the size of partial spreads in the polar space $H(4n+1,$q2$)$. This bound is tight and has already been proved in an algebraic way. Our alternative proof also yields a characterization of the partial spreads of maximum size in $H(4n+1,$q2$)$.
Databáze: OpenAIRE