THE NONLINEARIZATION OF A (2+1)-DIMENSIONAL SOLITON EQUATION
Autor: | Dian-Lou Du, Qiang Liu |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Zdroj: | Modern Physics Letters B. 22:3179-3194 |
ISSN: | 1793-6640 0217-9849 |
DOI: | 10.1142/s0217984908017709 |
Popis: | Based on a 2 × 2 eigenvalue problem, a new (2+1)-dimensional soliton equation is proposed. Moreover, we obtain a finite-dimensional Hamiltonian system. Then we verify it is completely integrable in the Liouville sense. In the end, we introduce a set of Hk polynomial integrable, by which we can separate the solition equation into three compantiable Hamiltonian systems of ordinary differential equation. |
Databáze: | OpenAIRE |
Externí odkaz: |