THE NONLINEARIZATION OF A (2+1)-DIMENSIONAL SOLITON EQUATION

Autor: Dian-Lou Du, Qiang Liu
Rok vydání: 2008
Předmět:
Zdroj: Modern Physics Letters B. 22:3179-3194
ISSN: 1793-6640
0217-9849
DOI: 10.1142/s0217984908017709
Popis: Based on a 2 × 2 eigenvalue problem, a new (2+1)-dimensional soliton equation is proposed. Moreover, we obtain a finite-dimensional Hamiltonian system. Then we verify it is completely integrable in the Liouville sense. In the end, we introduce a set of Hk polynomial integrable, by which we can separate the solition equation into three compantiable Hamiltonian systems of ordinary differential equation.
Databáze: OpenAIRE