Hausdorff dimension of local level sets of Takagi’s function

Autor: Haixiong Li, Chuntai Liu
Rok vydání: 2015
Předmět:
Zdroj: Monatshefte für Mathematik. 177:101-117
ISSN: 1436-5081
0026-9255
DOI: 10.1007/s00605-015-0743-6
Popis: Takagi’s function is a continuous nowhere-differentiable function constructed by Takagi in 1903. In this paper, we study the local level sets of Takagi’s function. By using the tools of Moran sets and symbolic spaces, we establish the Hausdorff dimension of local level sets for $$x\in [0,1]$$ and obtain the range of the Hausdorff dimension. In addition, we derive a lower bound for the Hausdorff dimension of the set of points $$x$$ whose local level set has Hausdorff dimension $$s$$ .
Databáze: OpenAIRE