Distinguishing orthogonality graphs
Autor: | Debra L. Boutin, Sally Cockburn |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of Graph Theory. 98:389-404 |
ISSN: | 1097-0118 0364-9024 |
DOI: | 10.1002/jgt.22704 |
Popis: | A graph $G$ is said to be $d$-distinguishable if there is a labeling of the vertices with $d$ labels so that only the trivial automorphism preserves the labels. The smallest such $d$ is the distinguishing number, Dist($G$). A subset of vertices $S$ is a determining set for $G$ if every automorphism of $G$ is uniquely determined by its action on $S$. The size of a smallest determining set for $G$ is called the determining number, Det($G$). The orthogonality graph $\Omega_{2k}$ has vertices which are bitstrings of length $2k$ with an edge between two vertices if they differ in precisely $k$ bits. This paper shows that Det($\Omega_{2k}$) $= 2^{2k-1}$ and that if $\binom{m}{2} \geq 2k$ then $2 |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |