Modeling the spread of Covid-19 using a multitype branching process

Autor: Hübner, Andrea
Jazyk: němčina
Rok vydání: 2021
Předmět:
DOI: 10.25932/publishup-50922
Popis: Im Zuge der Covid-19 Pandemie werden zwei Werte täglich diskutiert: Die zuletzt gemeldete Zahl der neu Infizierten und die sogenannte Reproduktionsrate. Sie gibt wieder, wie viele weitere Menschen ein an Corona erkranktes Individuum im Durchschnitt ansteckt. Für die Schätzung dieses Wertes gibt es viele Möglichkeiten - auch das Robert Koch-Institut gibt in seinem täglichen Situationsbericht stets zwei R-Werte an: Einen 4-Tage-R-Wert und einen weniger schwankenden 7-Tage-R-Wert. Diese Arbeit soll eine weitere Möglichkeit vorstellen, einige Aspekte der Pandemie zu modellieren und die Reproduktionsrate zu schätzen. In der ersten Hälfte der Arbeit werden die mathematischen Grundlagen vorgestellt, die man für die Modellierung benötigt. Hierbei wird davon ausgegangen, dass der Leser bereits ein Basisverständnis von stochastischen Prozessen hat. Im Abschnitt Grundlagen werden Verzweigungsprozesse mit einigen Beispielen eingeführt und die Ergebnisse aus diesem Themengebiet, die für diese Arbeit wichtig sind, präsentiert. Dabei gehen wir zuerst auf einfache Verzweigungsprozesse ein und erweitern diese dann auf Verzweigungsprozesse mit mehreren Typen. Um die Notation zu erleichtern, beschränken wir uns auf zwei Typen. Das Prinzip lässt sich aber auf eine beliebige Anzahl von Typen erweitern. Vor allem soll die Wichtigkeit des Parameters λ herausgestellt werden. Dieser Wert kann als durchschnittliche Zahl von Nachfahren eines Individuums interpretiert werden und bestimmt die Dynamik des Prozesses über einen längeren Zeitraum. In der Anwendung auf die Pandemie hat der Parameter λ die gleiche Rolle wie die Reproduktionsrate R. In der zweiten Hälfte dieser Arbeit stellen wir eine Anwendung der Theorie über Multitype Verzweigungsprozesse vor. Professor Yanev und seine Mitarbeiter modellieren in ihrer Veröffentlichung Branching stochastic processes as models of Covid-19 epidemic development die Ausbreitung des Corona Virus' über einen Verzweigungsprozess mit zwei Typen. Wir werden dieses Modell diskutieren und Schätzer daraus ableiten: Ziel ist es, die Reproduktionsrate zu ermitteln. Außerdem analysieren wir die Möglichkeiten, die Dunkelziffer (die Zahl nicht gemeldeter Krankheitsfälle) zu schätzen. Wir wenden die Schätzer auf die Zahlen von Deutschland an und werten diese schließlich aus.
During the Covid-19 Pandemic, the discussion about the situation has been dominated by two numbers: The number of daily new infected individuals and the reproduction rate. The latter is the average number of people, one infected individual will spread the disease to. Because the number of registered infected individuals is generally not equal to the actual number of people who carry the Corona virus, many facts about the Pandemic have to be estimated and can not be known for certain. Since the reproduction rate is an important parameter to signify the course of the Pandemic, many ways to estimate it have been developed. The Institute of Robert Koch in Germany uses two reproduction rates R in their daily reports: The 4-days-R-value and the less fluctuating 7-days-R-value. This master thesis will develop another model to estimate the R-value and other interesting aspects of the pandemic. The first half of this thesis will lay out the mathematical groundwork needed to understand the model. The reader is expected to already have basic understanding of stochastic processes. In the section Grundlagen we will discuss branching processes and present the results of their theory that are important for our work. We start by introducing simple branching processes and expand the results to multitype branching processes. In service of a simpler notation we will only consider two-type branching processes, but the logic can be used for any number of types. The importance of the parameter λ shall be stressed. It can be seen as the average number of descendants of one individual and dictates the dynamic of the process over a long period of time. In application of the modeling of the pandemic, λ plays the same role as the reproduction rate R. The second half of this thesis will present an application of the previously developed theory about multitype branching processes. Prof. Yanev and his colleagues modeled in their publication Branching stochastic processes as models of Covid-19 epidemic development the spreading of the Corona virus by using a branching process with two types. We will discuss this model and deduce estimators from it. We want to estimate the reproduction rate and analyze a way to find the number of not registered infected individuals. The estimators will be applied to the data from Germany and we will discuss the results.
Databáze: OpenAIRE